4050 HW Jan

5^t. In
$$\mathbb{R}^{t}$$
. = $\mathbb{R} \cup \{-\alpha, \alpha\}$, show the "Generalized"
Monoton Convergence There and for sequences of
extended -veal numbers : $\mathcal{I}_{f}(\alpha_{n})$ is a monotone
seq of extended -veal numbers then it converges
As a limit in \mathbb{R}^{t} . Show further that the
 $\operatorname{Imseq} X_{n} := \bigwedge_{K=1}^{\infty} \bigvee_{N \geq K} x_{n} (:= \operatorname{mif}(\operatorname{seq} x_{n}))$
 $\lim_{K \in \mathbb{N}} \inf_{N \geq K} x_{n} (:= \operatorname{mif}(\operatorname{seq} x_{n}))$
 $\lim_{K \in \mathbb{N}} \inf_{N \geq K} x_{n}$
 exist in \mathbb{R}^{t} , and that
 $\lim_{K = 1} \inf_{N \geq K} \inf_{N \geq K} \operatorname{exists}$
 $(\operatorname{and} all the three are some then).$